AD=A113 038

UNCLASSIFIED

PRINCETON UNIV NJ DEPT OF CHEMICAL ENGINEERING
AUTOMATED TORSION PENDULUM: CONTROL AND DATA COLLECTION/REDUCTI==ETC (V)

APR 82 J B ENNSe
TR-24

J K GILLHAM

F/8 9/2

NOGO14=76=C=0200
NL -




i
'y

Y

FPFFEEE

EEF
= =
lis B
o N

—
.
——
Er
r
re

== ||m 1.8

s s me

3

MICROCOPY RESOLUTION TEST CHART _
NATIONAL BUREAU OF STANDARDS.:1963-A




w OFFICE OF NAVAL RESEARCH
Contract N00O014-76~C-0200

-~ Task No. NR 356~504

TECHNICAL REPORT NO. 24
.
r={
v ;
AUTOMATED TORSION PENDULUM: .
% CONTROL AND DATA COLLECTION/REDUCTION o
USING A DESKTOP COMPUTER

by
John B. Enns and John K. Gillham

for publication in the

"Computer Applications in Coatings and Plastics"
Symposium Series, American Chemical Society

DTIC
Princeton University ELECTE

Polymer Materials Program
Department of Chemical Engineering APRG 1982 .
Princeton, NJ 08544

April 1982 B
Reproduction in whole or in part is permitted for
any purpose of the United States Government

This document has been approved for public release
and sale; its distribution is unlimited

Principal Investigator
John K. Gillham
609/452-4694

82 04 05 110

oidilo g ST AN Sy




SECUMTY CLASSIFICATION OF THIS PAGE (When Date Bntered)

REPORT DOCUMENTATION PAGE e EAD DTRUCTIONS

COMPLETING FORM
. NUM SOVY ACCEISION HEN ATALOS NUMBER
Technical Report #24 mlUﬁ / / 3 ) 3%

4. TITLE (and Subtitle) §. TYPE OF REPORT & PENIOD COVERED
March 1980-March 1982

o —————————————————
6. PERFORMING ORG. REPORT NUMBER

Automated Torsion Pendulum: Control and Data
Collection/Reduction Using a Desktop Computer

7. AUTHOR(S) T. A 1] ‘-)
John B. Enns and John K. Gillham N00014-76~C~0200

5. PERFORMING ORGANIZATION NAME AND ADGRESS T aRE e SLENENT. BROSFEY.
Polymer Materfals Program

Department of Chemical Engineering
Princeton University, Princeton, NJ 08544
11. CONTROLLING OFFICE NAME AND ADDRESS

Office of Naval Research

800 North Quincy St.

Arl:ln%ton, VA 22217
T MONITORING AGENCY NAME & ADORESS(I! ditferent frem Contrafiing Office) |

Task No. NR 356-504

12. AEPORT DATE

April 1982
713, NUMBER OF PAGES

5. SECURITY CLASS. (sof thie repest)

1ICAT GRADING
tWLI caTIon/Down '

I7%. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release; Distribution Unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 30, if different from Report)

8. SUPPLEMENTARY NOTES

15. KEY WORDS (Concinue on reverse side i necossary and idontify by Blesk number)

Torsion Pendulum Instrumental Control
Torsional Braid Analysis Data Procusing

Transitions Desktop Cpnputer

. ABSTRACT (Continue en reverse side if nososoary and identily by

A torsion pendulum interfaced with a desktdp eo-putcr fm n sutomated instru-
wment for dynamic mechanical characteri¥atidn of polymeric tl:uh. The com-

puter controls the initiation of the ,oocil tions, collects the digitized data
and calculates the shear modulus - ulus the oncnhtions.
utilizing one of four methods of :ghlyi“: a points abou ;

the maxims and minima to a quadratic equation to obtain their times and -pli—

tudes, from which the frequency and logarithmic decrement can be calculated;

DD 5%, 1473  soimon oF 1 nov 68 1s oBsOLETR

S/ N102-LP014.6601

L " FICATION ©




SEBYRIYY CLASSIFICATION OF THIS PAGE (When Date Bntored)

2) fitting the data to a four-parameter equation of motion by a least squares |
technique; 3) fitting the data to a six-parameter solution to the equation of
motion by a non-linear least squares technique; and 4) taking the Fourier

transform of the data, which results in a maximum at the frequency of the

oscillation whose amplitude is inversely proportionsl to the damping coeffi-
cient., The advantages and disadvantages of each method are discussed and the
teoulef torsion pendulum and torsion braid analysis (TBA) experiments are

compared.
!
!
;

. : :

-

E Accession For P

o NTIS GRART i

SN DTIC TAB

. 1 Unennounced g

Justification o

By
. g Distrgbutggg/

: Availability Codes
r vail and/or
O Dist Spectal
{

»

A

oTIc
A o
' MRPee v

1
——

——— —Sr—
SECUMTY CLABIFICATION GF Ttur PAGE(WRon Bate Butered)




,1: . B I _ . — _
, — e

AMERICAN CHEMICAL SOCIETY SYMPOSIUM SERIES
“Computer Applications in Coatings and Plastics”

in press.

1,
e

AUTOMATED TORSION PENDULUM:
CONTROL AND DATA COLLECTION/REDUCTION
USING A DESKTOP COMPUTER

John B, Enns and John K. Gillham
Polymer Materials Program
Department of Chemical Engineering
Princeton University
Princeton, New Jersey 08544

A torsion pendulum interfaced with a desktop computer
form an automated instrument for dynamic mechanical
characterization of polymeric materials. The com-

{ puter controls the initiation of the oscillations,

: collects the digitized data and calculates the shear
modulus and loss modulus from the damped oscilla-
tions, utilizing one of four methods of analysis:

1) fiteing the data points about the maxima and
ninima to a quadratic equation to obtain their times

, . and amplitudes, from which the frequency and log-

. arithmic decrement can be calculated; 2) fitting

> the data to a four-parameter equation of motion by a

least squares technique; 3) fitting the data to a

T six-parameter golution to the equation of motion by

EN a non~linear least squares technique; and 4) taking
the Fourier transform of the data, which results in
a maximum at the frequency of the oscillation whose
amplitude is inversely proportional to the damping

sy coefficient. The advantages and disadvantages of

s each method are discussed and the results of tor-
My sion pendulum and torsion braid analysis (TBA) ex-
b periments are compared.

&

¥
( 2 The torsion pendulum has proven to be an important and versa-
: §s tile tool in the study of dynamic mechanical properties of mater-

i ials. 1In our laboratory it has been applied primarily to poly-

i mers, although elsevhere it has been used with a wide variety of

g‘ materials, ranging from liquids to metals and ceramics. The basis
DR of its wide appeal lies in its fundamental simplicity: informa-

& tion about the complex modulus of the material under investigation
T K is obtained by simply observing the decaying oscillations of the
S pendulum, After the pendulum is set in motion, it is permitted to
! . oscillate freely at its resonant frequency while the amplitude of
the oscillatory wave decays. In an unautomated system it is a
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relatively simple but tedious task to calculate the shear modulus
and the loss modulus from the period of the oscillation, its log-
arithmic decrement and the geomatric constants of the system. The
independent variable in the investigation of dynamic mechanical
properties of a material is often temperature, but it can also be
time, as in the case of chemically reactive or physically sging
systems.

A variation of the torsion pendulum, torsional braid analysis
(TBA), utilizes a supported specimen so that the dynamic mechani-
cal properties of a sample can be monitored in the liquid as well
as the solid states (1, 2). An inert multifilamented glass braid
is impregnated with the sample (usually in its liquid state or in
solution). The observed dynamic mechanical properties are rela-
tive due to the composite nature and complex geometry of the spec-
imen,

The purpose of this paper is to describe an automated torsion
pendulum controlled by a desktop computer, to discuss four separ-
ate methods of data analygis, and to compare the results of a tor-
sion pendulum experiment and a TBA experiment using the same epoxy
resin.

Instrumentation

A schematic diagram of the torsion pendulum is shown in Fig~
ure 1, Free oscillations are initiated by an angular step~dis-
placement of the upper member of the pendulum. The response of
the lower member is a damped wave at the natural frequency of the
system, and therefore is related to the physico-mechanical proper-
ties of the apecimen.

The damped oscillations are converted to an electrical signal
by a non-drag optical transducer: 1light is passed through a pair
of polarizers, one of wvhich serves as the inertial mass of the
pendulum, to a photo-detector. The temperature, humidity and gas
(usually helium) surrounding the specimen are closely controlled.

The torsion pendulum has been interfaced with a digital desk-
top computer (Hewlett Packard 9825B) showm in the system diagram
Figure 2 (3). The motors which slign the specimen and initiate
the vaves are under computer control via the scanner (HP 3495A)
and relays. At present the direction of the temperature scan and
the atatus of the experiment (whether to hold, reverse, or termi-
nate) at either of the temperature limits set by the programmer
(Eurotherm Corp.) are under computer control as well, but the rate
of temperature change and the limits are not. The amplified
thermocouple and wave signals are digitized by s high speed digi-
tal voltmeter (HP 3437A) whose scan rate is programmable, and the
scanner supervises the 1/0 activity. The computer calculates the
frequency and damping parameters from the raw data and plots the
dynamic mechanical properties of the specimen as a function of
temperature and/or time. A photograph of the equipment is shown
in Figure 3. A commercial version of the automated torsion
pendulum/torsion braid analyzer is available from Plastics Analysis
Instruments, Inc., P.O. Box 408, Princeton, New Jersey.
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For each damped wave the computer goes through a control
sequence, schematically represented in Figure 4. Since the spec-
imen may twist due to an uneven distribution of thermal stresses,
the alignment motor rotates the pendulum through a gear train to
the same reference position at the start of each control sequence.
To initiate the oscillations, a second motor rotates the pendulum
a specified angular displacement against the tension of a spring.
The pendulum is held in this cocked position until oscillations
set up by the alignment and cocking procedure have decayed, at
vhich time the clutch is disengaged and the pendulum swings back
80 as to oscillate about the reference position. The data are
then collected and reduced. The temperature (or time, for iso-
thermal runs) is measured with the specimen in the cocked position
and again after the data are collected. After plotting the re-
duced data, the oscillation is monitored until it decays to within
specified limits and the cycle repeats.

The data obtained from the torsion pendulum can be displayed
in various modes (4): the shear modulus G' is given by

2n, 2 A2
6 = KI(P) 1+ G ) ¢h)
or by its approximation
2
6! = 4n’KIE) 2

where P is the period, A is the logarithmic decrement and K is a
geometric constant. In a TBA experiment, where K is unknowm, the
relative rigidity [=(1/P)?] is measured. Usually the logarithmic
decrement term in equation (1) is negligible; only in the transi-
tion regions, where A > 0.6, does it become greater than one per-
cent. In Figure 5 both the shear modulus and its approximation
are plotted (5, 6): the curves are indistinguishable except in
the transition regions. The energy lost during the deformation
can be displayed in a variety of ways (Figure 5): loss wmodulus

G" = 47Kla/P, (3)

logarithmic decrement

Asx %r = gP = wtané, (&)

and damping coefficient a. A shift is observed in the maximm by
wvhich the transition temperature is identified: for example,
Tg(G") < Tg(s) < Tg(a) for a solid-to-rubber transition. (For a
rubber-to-solid transition the shift occurs in the reverse order.)
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Software

An efficient algorithm is required to monitor the oscillatory
wave signal in real time. The flow chart is shown in Figure 6.
The algorithm is used to monitor the wave while waiting for it to
decay (Figure 4: prior to I and between IV and V), and to collect
the data (Figure 4: VI) for subsequent analysis. The routine
will provide the approximate location of the extrema (peaks) in
real time at a scan rate of up to 75 points per second. If a scan
rate faster than 75 pointe per second is required, the maxima and
minima are located after the data have been collected and before
initiation of the next wave.

In order to digitize the signal efficiently, the scan rate
{(digitization rate) S, must be chosen to match the characteristics :
of the oscillations. The optimum scan rate is a function of the !
period (P) of the oscillation, the number of data points (N) col- i
lected per wave, the time required for the oscillations to decay
to a specified limit, and the method of analysis used. The gcan
rate corresponding to 40 points per cycle (S = 40/P) provides an
adequate representation of the oscillations for wost data reduc-
tion methods (see later). A rough estimate of the period is ob-
tained from the first quarter cycle after initiation, and the scan
rate is adjusted accordingly. To locate the peaks, an interval
consisting of 1 + 4R (where R is a function of scan rate, usually
equal to 4) data points moves along as the data are acquired, and
the local maxima and minima are located by determining whether the
center datum point of the interval is greater than (for a maximum)
or less than (for a minimum) both the first and last data points
of that interval. As soon as this set of criteria is met the
center datum point is stored: the next peak is then sought. The
reason for using more than three consecutive data points is to
insure that a noisy signal does not simulate a maximm or minimum.
This method, although quite crude, is wmuch faster than one which
involves taking a derivative of the data to locate the peaks.
After all the data points have been collected, an spproximate
determination of the peaks is made by searching for tl. maximum or
ninimum among the data points within each of the intervals in
which a saximum or minimum was detected.

Data Reduction. The oscillatory motion of a freely moving
torsion pendulum has been described by an equation of motion (4):

2 2 -
I d*e/dt” + "dyn do/dt + cdyne 0 (5)
where I is the moment of inertia, "dyn is the dynamic viscosity,
Gayp 18 the elastic shear modulus, 6 is the angular deformationm,
and t is the time. The solution is a damped sine wave:

6= eouxp(-ut)con(ut + $) (6)
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where 6, is a constant; a is the damping coefficient,
- "dyn/n : )

w is the natural angular frequency (radians/sec),
G n
o= [ - Syt ®

and ¢ is a phase angle. The shear modulus, G', and loss modulus,
G", can be derived from information in the wave:

G' = KI(w? + a?) 9)
and G" = 2Klaw (10)
where K is a geometric constant.

Peak Finding Method. Since the approximate location of the
peaks has already been determined, the data points about each pesk
are fitted to a quadratic equation

6 =a+ bt +ct? (11)

by a least squares method. The optimum number of data points to
be used in fitting the quadratic equation to the data has been
determined to be those in the interval : 0.27 (7). Since the data
were obtained at a scan rate such that 40 points per cycle were
collected, the number of points used for fitting s quadratic is
(0.47/27)40 = 8; because the calculations require an odd number of
data points, 9 data points are used. Linear least squares fitting
of the experimental data points to the quadratic equation requires
minimization of the summation of residuals °*

I (£, - 8))* (12)
i=1
where £, =8 +bt + ctiz 13)

and 64 are experimentally observed data at times t,. From the re-
quirement that Q sust be minimized,

aAk'zz(f 1)(“1:)-0 (k =1 to 3) (14)
wvhere Al -a, 52 = b, and A3 = c;

this results in a set of three linear equations written in matrix
form:
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t Ye2 Yl A - RN (15)
21 £ tY 2 IR

Te2 I} Y A Ytie

Lt &% LY 3 \.111-

If the time-axis data are offset so that the central datum point
is zero, the odd powered summations are identically equal to gero,
thus simplifying the matrix. The solution to this set of equa~-
tions provides the parameters of the quadratic equation. The best
estimate of the peak position is obtained from the first deriva-
tive

-:—:—-b+2c:-o, (16)
tp - - '2‘26 (17)
and 2
b b .2 b
9p-n+b(--2—5)+c(--2-c-) & -7t - (18)

This procedure is performed for the first minimum and the follow-
ing maximum, as well as for the last pair (the selection of which
depends on the damping), and the period is calculated by dividing
the elapsed time between the maxima by the number of cycles. The
logarithmic decrement is obtained from the relation

2 81-%
8= Gl (1=3,57...) 19
i "1-1
vhere 91 is the amplitude of the ith extremum.

Least Squares Method (8). A torsion pendulum specimen has a

tendency to change its rotational orientation during the course of
an experiment due to an uneven distribution of stresses caused by
volume expansion and contraction. This reaults in a drift in the
baseline of the vave signal which can be represented by

8= oocxp(-ut)cos(ut +¢) + Bt +C (20)

wvhere B io.thc drift coefficient and C is the offset. The corres-
ponding differential equation can be written as




2
3 7+ 2082+ (o2 + w6 - Cla? + 0?) - 20B -B(alewd)e = 0
i Y

(21)
. which may be simplified to
o . 428 de -
o D Fre] +A GE A A A, 0. (22)

Ay (k = 1 to 4) are the parameters fitted by a linear lc st
squares analysis to determine

A
R (23)
and
| Alz‘: 2w
o W'[Az-(—z-)] -5 - _ (24)

The derivative values of 6 at any point i are calculated numeri-
( cally from a quadratic equation which uses five consecutive points
to obtain the first and second derivatives:

+ 8
10h

gt . ['291-2 " 8

(25)

1t 291_+3)

i .2, : 2 - - -
' - d 61 r29 _ 91_1 26i 91+l + 291_'_2 26
i datZ bl § 7hT (26)

vhere h is the time interval between data points.
1~ The linear least squares fitting of n experimental data
| ~ ' points to the differential form of the equation of motion involves
{

minimization of the summation

: ‘i n

o Q= I (£, -D,)? (27)
A H ? i=1 i i
‘ ‘ i vhere
S R a%e, de,

| g - ——
. _4 s £, EEZ- + A &, + A0, + A, + A, (28)
. : is calculated from experimental data and D, is identically szero by
3 ‘ 1 definition. From the requirement that Q d mininized,

29 'f oy 4) 9
s 2 £ (>=—=)=0 (k =1 to . (29)
W Taa 1

This set of linear equations can be written in matrix notation:

v
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= 22 ° [3 o« ™ .P'Vq - . -1
g 8y E 648 E Oty E 71 A 'E 8494
. ) .
8,8 8 8,t 8 A -J e.0
} i1 E i } 174 E i 2 : 1
- (30)
1 3 2
Yeétr, Yot Tt Tt A ~J et
$ 1 S A | S 3 N
E 8, } o, z t, z 1 A, ~§ o,

When this expression is solved for Ay, the values of a and w are
obtained (Equations 23 and 24).

Non-Linear Least Squares Method (9). Assuming that (from
equation 20)

f = Alexp(-Azt)cos(A3t + A4) + At + A6 (31)

where now A, = 8 , Ay = = 2n/P, Ay = ¢, A =Band A, = C
is an adequiate representatio% of the solution to the equation of
motion of a torsion pendulum, the parameters Ay (k = 1 to 6) can
be determined by fitting the data (84, ty; 1 = 1 to n) to the

solution.
1f the values of the parameters Ay were known, it would be

possible to evaluate

fi = A exp(- Azt )cos(A g * AA) + Aty + Al (32)
for each ti to obtain a set of "true" residuals
r, - fi - 6i (1 =1 to n). (33)

A "true" residual would represent the difference between the
Actual function value at t{ and the empirical value 8j. These
"true" residuals cannot be calculated because the actusl values of
the parameters A are not known.
However, initial estimates of the parameters Af can be ob-
tained from other methods, or a previous wave, and "computed"
residuals can be calculated:

]
Ri-Alexp(-A )cos(Ast + A ) + Asti + A6 01 (34)
({1 =1 ton)
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Improved estimates of the parameters Ay can be obtained by a dif-
ferential correction technique based on least squares, provided
that the estimates Ak are sufficiently close to the actual values
of the parameters Ay to lead to convergence of the method. This
differential correction technique can be derived by first expand-
ing the function about Aﬁ using a linear Taylor series expansion
of the form

° 0 °
f(ti) A1’ Azp soey A6) = f(ti’ A1’ Azp seey A6)
af ° of of °
BAI(A]. - Al) + EKZ(AZ ) + cee * 3A6(A6 - A6) (35)

so that a relation between the rj and Rj can be obtained. This
relation can be found by evaluating the equation at each value of
t;y and subtracting 64 from both sides of the equation. Using the
definitions

or = A~ K )

and

Bfi afi

v R ——

] 2 °
Ae MWde - t; A = A (37)
the result can be written in the form
o -] o
f(ti’ Alt Azt voey A6) - ei - f(ti’ Ali A2| ceop A6)

of

f
i 4 =
+ (aAl) Ay + ... 4 (3A6) SAg (i=1ton) (38)

The desired relation between the rjy and Ry can then be found by
substituting the expressions for ry and Ry:
afi 3f

r, = R + (aA )6A + ...+ ( )6A (1 =1 ton). (39)

This relation can be used to compute, from Aﬂ, a set of parameters
Ax that minimizes the sum of the squares of the "true" residuals
ri’ 1QEo|

n 3f afi 2
ilr - 21 [n + G )6A + ...+ (aA )6A6) . (40)
i= i=

The function Q has a minimum value when all of its partials with
respect to the 6Ax are simultaneously zero:

R
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af 3f af
3 n
3—‘—5%;)_ 2 2 (‘k)Ri + (aAk)(aAl)sA + ...
af af
Ak)(aA YA, =0 (k=1 to6). (41)
Rearranging,
i % af af § afi afi
SA (= )( ) + ...+ 6A G =
1 aAk aA 1_1 aAk 3A6
; ' f
‘ & (k =1 to 6) (42)
1=1 aAk f1
3
Evaluating this equation for each k, and writing the result in ?
{ matrix form, the normal equations are obtained: !
", RN LI T ay A afJ ‘1 [
Ta) lwmw Dww law o taw| s [Tan |
ar, of " i, of i o af of TR Y o
R TG rEE R R oEE| ) i P
. i, o o, ” a, ot ), ot o, o i b
o Imm Imw [ & Imw Imw I w [T
- af, o a, ot o, 14 ot i, af ) o “n
i
| IR IEE D RE TG IRE IRE e MR
5 i, i, i, f, o 114 2 i, ot o
| EE RIS T R T U S
i ¥, o ot o, ot at, af o, o "
o W OEE URE IEE EE | | 1R
! L . J L. .
! ]
P +
'
Ty
g vhere 1
of
-~ exp(-A,t_)cos(A.t, + A,),
o 3A1 2 1 371 4
. af

i
3A2 = -Altiexp(-Azt )coa(A t + Ab)
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aAB - -Altiexp(-Azti)-in(A3t1 + A‘). (46)

of

Jqﬁm( t)sin(At, + A

) 7

(48)

1.

The solution, $Ak, of this set of normal equations is a first-
order approximation of the changes in Ak tequired to obtain the
parameters Ag. If any |6Ak| > ¢ (error limit), Ak is replaced by
Ak + SAx and the entire differential-correction procedure is re-
peated using these new estimates,

Fourier Transform Method. Another method of data reduction
is to take a fast Fourier transform (FFT) of the wave (10). As indi-
cated in Figure 7, the Fourier transform of a damped sine wave
with a single frequency is a single maximum in the frequency .
domain at the frequency of the oscillation. The amplitude (H) of
the transformed data as a function of angular frequency (uw) is
given by (11)

0, [o? (au®u?)? + u? (aP4u?-u?)?)"
(c2+w:-wz)2 + (20w)?

H= (50)

where 6, is the initial amplitude, o is the damping coefficient,
and wo is the natural angular frequency of the oscillation. The
amplitude of the peak is given by

9 Q + U k 90
S D UG R G (s1)

from which a, the damping coefficient. is obtained.

Discussion. The four methods of data reduction were used
to analyze the raw data of the same TBA specimen during a slow
(0.25°C/min) temperature scan (Figure 8). A comparison of
the spectra indicates that they all gave similar results over
the range of period (0.3 to 1.8 sec) and logarithmic decrement
(0.01 to 1.08) encountered in the experiment. (The automated
torsion pendulum has been used to reduce data with a range of
0.1 to 15 sec. for the period, and 0.001 to 4.0 for the

e,
v e
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logarithmic decrement). In Figure 8 there is no appreciable dif-
ference in the relative rigidity, but in the logarithmic decrement
the non-linear least squares reduction method produces the smooth-
est results, followed by the peak-finding method. The linear
least squares and Fourier transform methods have considerable
scatter.  The linear least squares method also results in a small
systematic difference in the logarithmic decrement from the other
three.

Although the peak-finding method is the simplest way of de-
riving the period and logarithmic decrement from the raw data, it
has some limitations in that at least 2.25 cycles of oscillation
are required in order to do the calculation. This is a problem
when the system approaches critical damping conditions. It also
is difficult to calculate the logarithmic decrement at very low
damping (when the peak amplitude changes only slightly during the
time data is collected) due to the resolution of the digitizing
voltmeter. Of the four methods discussed, the peak finding method
is the most sensitive to the scan rate, since the number of data
points about each peak that are fitted to the three-parameter
quadratic equation should be at least nine as discussed earlier.
Therefore the scan rate, whica depends on the estimate of the
period, needs to be quite close to 40/P, where P is the actual
period. Also, a systematic error is introduced when this method
is used, because the position of the peaks is a function of the
damping as well as the period. As can be seen in Figure 9, the
peaks shift to shorter times as the damping increases.

The least squares fitting method overcomes limitations of the
peak finding method, but introduces some errors of its own. It is
not as sensitive to the scan rate, as long as S >> 2/P (the
Nyquist frequency), and its accuracy increases with increasing
number of data points. It was found empirically (8) that the
error was reduced if an integral number of cycles was used in the
analysis. Some error is introduced due to the fact that first and
second derivatives of the raw data have to be taken.

The use of the non-linear least squares method does not re-
quire any derivatives, but needs an initial estimation and takes
more time to compute, since several iterations (usually 3 or 4)
are necessary to reduce the difference between the estimated and
calculated values of the damping coefficient to within 0.1%. But
since this method only requires between 100 and 150 data points
without a loss in accuracy compared to as many as 1000 for the
peak-finding and least squares methods, the scan rate can be re-
duced as much as 90% and the time required for the calculations is
reduced to the order of a minute.

The Fourier transform method requires a minimum of 1024 data
points to provide enough resolution to calculate the demping co-
efficient. The FFT of 1024 data points takes approximately a min-
ute with the HP 9825B computer, so this constitutes a practical
limit in resolution due to computer memory size and time consider-
ations. So as not to introduce error, the damped oscillations

12
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must not be truncated; therefore it is important to adjust the
scan rate and the number of data points so that the entire wave is
collected. The major problem with using the FFT method is the
difficulty in obtaining accurate values of a; the curve is
Laurentian, and hence its amplitude at the maximum is difficult to
obtain. One way around this is to use a curve fitting procedure,
but then there is no advantage in using this method. Sowe slter-
natives may be to use a larger and faster computer, or a dedicated
microprocessor such as the spectrum analyzer (HP 3582A), which can
compute the FFT in real time. A practical feature of the FFT is
in the display of the transformed data; any non-homogeneity of the
signal due to other modes of motion will appear as secondary peaks,
and so this method serves as an excellent way to monitor the
oscillations.

Although comparison of the four methods shows that the
smoothest reduced data for the given experiment were obtained
using the non-linear least squares method, the ultimate quality
depends on the quality of the sensor signals of the experiment.
Published superior TBA spectra obtained using the linear least
squares method (8), and the peak-finding method using an analog
computer (2), were presumabiy the consequence of a better basic
experiment than the one used in this report to compare (as in
Figure 8) the data reduction methods.

Calibration

A calibration wire whose shear modulus is known can be used
to determnine the moment of inertia of the pendulum assembly, so
that quantitative sesasurements of the dynamic mechanical proper-
ties of specimens can be made. The shear modulus of the calibra-
tion wire is obtained by measuring the period of oscillation of a
simple torsion pendulus consisting of sn aluminum rod suspended by
the wire. The moment of inertia of this system is given by

2 2
) 4 | ]
Ie -(—-3 + —-12) (52)

vhere m is the sass, r is the radius and L is the length of the
rod.
The she.r modulus G' of a wire is given by

¢' - -:-”‘%} (53)

vhere L is the length and R is the rvadius of the wire. With the
calidbration wire (vhose shear modulus was determined to be 9.789 x
10!! dyne/cm?) as & specimen in the sutomated torsion pendulum,
the moment of inertia of the pendulum that was used routinely in
the subsequent experiments vas determined to de 138.7 g~ca’. The

shear modulus of s film of known dimensions can then be calculated
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from the period and logarithmic decrement using the equation (4):
2

nga (54)

AZ
A+ " Iw

4v2IL
¢ =

where N 18 a form factor:

N= 2%1 (1 - 0.63 d/a), (55)

a {s the width, b is the thickness (b < a/3), L is the length, m
is the mass supported by the specimen and g is the gravitational

constant.

Comparison of Torsion Pendulum and TRA

A film of an amine~cured epoxy, Epon 828 (Shell)/PACM-20
(DuPont) with Tgw = 166°C, was cured by heating it to 250°C in a
helium atmosphere. The dynamic mechanical spectrum of this film
is shown in Figure 5. For comparison, the corresponding spectrum
of a specimen consisting of a multifilamented glass braid impreg~
nated with the uncured resin and cured in the TBA apparatus by
heating it to 200°C under helium atmosphere is shown in Figure 10.

It has been reported (12) that the shear modulus as measured
by the torsion pendulum and TBA should differ only by a multipli-
cative constant below Tg and the logarithmic decrement should be
identical. Although the spectra of Epon 828/PACM~20 obtained by
torsion pendulum and torsional braid analysis show transitions at
the same temperature (glass transition at 166°C and a secondary
sub-glass transition at ~28°C), the results indicate that the
actual modulus and logarithmic decrement cannot be compared quanti-
tatively. In Figure 11 the relative rigidity (TBA) has been
shifted vertically for comparison with the torsion pendulum data;

a vertical shift on a logarithmic scale is equivalent to multi-
plying by a constant. It is evident by comparing the curves in
Figure 11 that there is only a qualitative correlation between them.

Conclusions

The sutomation of the torsion pendulum utilizing a desktop
computer eliminates the tedious data analysis previously associated
with that technique. Any one of four data reduction methods can
be used; the experimental conditions will determine which is the
optimum one to employ. The torsion pendulum technique provides
quantitative values of shear modulus and logarithmic decrement and
in the torsion braid mode provides a qualitative analysis of
materials, especially in the liquid-to~solid transition region.

In addition to providing the capability of using any one of four
data reduction techniques, the computer has the advantage of stor-
ing the data on magnetic tape, where it is available to be

14
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accessed for further computation or to be plotted in whatever mode
is most suitable. Since the computer is easily programmadle, the
software can readily be adapted to consider other variables or to

control the experiment in other ways.
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Figure Captions ]

Figure 1. Automated torsion pendulum: schematic. An analog 1
electrical signal is obtained from passing a light beam |
through a pair of polarizers, one of which oscillates
with the pendulum. The pendulum is aligned for linear
response and initiated by a computer that slso ,ﬁ

processes the danped waves to provide the elastic

modulus and mechanical damping dats which are plotted

on an XYY plotter versus temperature or time.

Figure 2. Automated torsion pendulum: system achematic for
interfacing with a digital computer. The torsion
pendulum has been interfaced with a digital desktop
computer (HP-9825B). The motors which align the
specimen and initiate the waves are under computer
control. The wave and amplified analog thermocouple
signals reach the computer digitized via a digital
voltmeter (HP-3437A). The scanner (HP-3495A) super-
vises the I/0 activity. Upon receiving the digitized
raw data the computer calculates the frequency and
damping parameters, and plots the dynamic mechanical
properties of the specimen as a function of tempera-
ture and time.

Figure 3. Automated Torsion Pendulum: the pendulum is housed in

the cabinet at the left; the oven is separated from

the optical transducer by an insulated 3/4 inch
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Figure 4.

Figure 5.

Figure 6.

Figure 7.

horizontal aluminum plate. The tcnperltu;e controller,
digital voltmeter,scanner, and computer are in the
rack at the right. The atmosphere control panel and
liquid nitrogen container are shown in the background.
One of the authors (JBE) is seated at the console.
Automated torsion pendulum: control sequence.

I) Previous wave decays, drift detected and correc-

_ tion begins. 1I) Reference level of polarizer pair

reached. I11) Wave initiating sequence begins.

IV) Decay of transients. V) Free oscillations begin.
VI) Data collected. VII) Control sequence repeated.
Dynamic mechanical spectrum (torsion pendulum) of a
cured £ilm of Epon 828/PACM-20. Both the shear
modulus G' (C}) and its approximation g' (Q) are
plotted on the upper curve; the lower three curves
are loss modulus G" (o), logarithmic decrement 4 (%),
and damping coefficient a (+).

Flow diagram of data collection/peak-finding
algorithm.

Fourier Transform Method. The Fourier transform of

an exponentially damped sine wave of period P and
damping coefficient a is a single maximum at the
oscillation frequency vwhose amplitude is inversely

proportional to the damping coefficient.

. P
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Figure 8. Dynamic mechanical spectrum (.'I‘BA) of “Epon 828/1’ACH-20
in which the relative rigidity and logarithmic

decrement have been calculated by four methods:
peak-finding (PKF ([J)], linear least squares

[LSQ (%) , non-linear least squares [NLSQ (+)], and
fast Fourier transform [FFT (0)]. For clarity the

LSQ, NLSQ and FFT data have been displaced vertically

k in equal increments from the PKF data.

N ‘ Figure 9. Damped Sine Wave. Error in measuring period by peak-
L finding method: the peaks of an exponentially

' ‘ damped sine wave of single frequency (0.5 Hz) shift

to shorter times with increasing damping coefficient
‘; (a values: — 0.05, -- 0.5, -.- 1.0, — -- — 1.5).
: Figure 10. Dynamic mechanical spectrum (TBA) of a cured composite
:‘ al specimen (glass braid impregnated with Epon 828/PACM-
L g 20 resin).
f Figure 11. A comparison of torsion pendulum data obtained using
a film [G' (J), & (*)] and TBA data obtained using

i a supported specimen [relative rigidity (Q), 4 (o)).
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DAMPED SINE WAVE (TBA signal)

Eqn. of motion I—* —*G 8 =8
" dng 4

Solutiore 6=86 oxp('ut)cos('t)

Shear modulus: 6 = KIGx’ + ¢
Loss sodulus: 6'* = Kiwa

vhere v = &/P, a= P and & = In(A /A 4y
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